Research Article

Therapeutic Administration of Thymoquinone on Potential Regulation of Folliculogenesis and Mice Estrus Cycle Activation

Authors

  • Jabbar Jassim Hamady Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Wasit, Wasit, Iraq

    jhamady@uowasit.edu.iq

Abstract

The study of the evaluation of therapeutic potential administration of thymoquinone on mice estrus cycle function when exposed to the stressed environment condition has been carried out in the animal house at the College of Veterinary Medicine University of Wasit. Thirty mice received three different treatments: The control group received normal saline drenching while group members in the stress and thymoquinone groups received normal saline and ten mg/kg b.w. thymoqunone, respectively. Both groups stayed in (30±1°C) conditions for two weeks. Results indicated that thymoqunone significantly affected reproductive functions at physiological levels than the control group did. The ovaries were collected from all groups post-thymoquinone treatment through synthesized mice which received a mixture of xylazine 10 mg/kg b.w and kitamine 100 mg/kg b.w. The samples were maintained at liquid nitrogen for PCR analysis of stress-induced changes in ovaries tissue through inhibin hormone and HSP70 protein differentiation. The thymoquinone treatment at (10 mg/kg b.w.) created a highly meaningful change compared to the heated (30±1°C) stressed animals for the two-week trial. 

Keywords:

Estrus Cycle Function HSP70 Inhibin Thymoquinone

Article information

Journal

Journal of Agriculture, Aquaculture, and Animal Science

Volume (Issue)

2(1), (2025)

Pages

76-81

Published

23-03-2025

How to Cite

Hamady, J. J. (2025). Therapeutic Administration of Thymoquinone on Potential Regulation of Folliculogenesis and Mice Estrus Cycle Activation. Journal of Agriculture, Aquaculture, and Animal Science, 2(1), 76-81. https://doi.org/10.69739/jaaas.v2i1.405

References

Abdullaev, S. A., Fomina, D. V., Raeva, N. F., Popov, M. A., Maksimova, T. N., & Zasukhina, G. D. (2025). Mechanisms of Modulating Action of Thymoquinone (Component of Black Cumin, Nigella sativa), Affecting the Activity of Some Nuclear and Mitochondrial Genes in Mice Tissue after Exposure to X-ray Radiation. Russian Journal of Genetics, 61(1), 31-36.‏ https://doi.org/10.1134/S1022795424701369

Alaee, S., Mirani, M., Derakhshan, Z., Koohpeyma, F., & Bakhtari, A. (2023). Thymoquinone improves folliculogenesis, sexual hormones, gene expression of apoptotic markers and antioxidant enzymes in polycystic ovary syndrome rat model. Veterinary medicine and science, 9(1), 290-300.‏ https://doi.org/10.1002/vms3.958

Al-Hetty, H. R. A. K., Jabbar, A. D., Eremin, V. F., Jabbar, A. M., Jalil, A. T., Al-Dulimi, A. G., ... & Saleh, M. M. (2023). The role of endoplasmic reticulum stress in endometriosis. Cell Stress and Chaperones, 28(2), 145-150. https://doi.org/10.1007/s12192-023-01323-2

Behairy, A., Elkomy, A., Elsayed, F., Gaballa, M. M., Soliman, A., & Aboubakr, M. (2024). Antioxidant and anti-inflammatory potential of spirulina and thymoquinone mitigate the methotrexate-induced neurotoxicity. Naunyn-schmiedeberg’s Archives of Pharmacology, 397(3), 1875-1888. https://doi.org/10.1007/s00210-023-02739-4

Benjamin, M. (2025). Phytochemical Composition and Pharmacological Activities of Nigella sativa.‏ ResearchGate. https://www.researchgate.net/publication/389518733_Phytochemical_Composition_and_Pharmacological_Activities_of_Nigella_sativa

Cartwright, S. L., Schmied, J., Karrow, N., & Mallard, B. A. (2023). Impact of heat stress on dairy cattle and selection strategies for thermotolerance: a review. Frontiers in veterinary science, 10, 1198697.‏ https://doi.org/10.3389/fvets.2023.1198697

Chandimali, N., Bak, S. G., Park, E. H., Lim, H. J., Won, Y. S., Kim, E. K., & Lee, S. J. (2025). Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discovery, 11(1), 19.‏ https://doi.org/10.1038/s41420-024-02278-8

Gupta, M., Vaidya, M., Kumar, S., Singh, G., Osei-Amponsah, R., & Chauhan, S. S. (2025). Heat stress: a major threat to ruminant reproduction and mitigating strategies. International Journal of Biometeorology, 69(1), 209-224.‏ https://doi.org/10.1007/s00484-024-02805-3

Gupta, S., Sharma, A., Joy, A., Dunshea, F. R., & Chauhan, S. S. (2023). The impact of heat stress on immune status of dairy cattle and strategies to ameliorate the negative effects. Animals, 13(1), 107.‏ https://doi.org/10.3390/ani13010107

Hamady, J. J., & Hayyawi, M. S. (2024). Effect of stress environmental conditions on mice fertility. Eastern Journal of Agricultural and Biological Sciences, 4(1), 106-110.‏ https://doi.org/10.53906/ejabs.v4i1.314

Hamady, J. J., & Hayyawi, M. S. (2024). Physiological Therapeutic Protective Function of Thymoquinone on Mice Fertility. Journal La Lifesci, 5(5), 521-528.‏ https://doi.org/10.37899/journallalifesci.v5i5.1695

Hamady, J. J., Ganim, K. G., & Ali, Z. S. (2016). Effect of Methanolic and Phenolic Extracts of Nigella sativa Seeds on Testicular Expression Levels of inhibin alpha and beta Genes in Mature Male Wistar Rats. Journal of Applied Pharmaceutical Science, 6(8), 118-121.‏ https://dx.doi.org/10.7324/JAPS.2016.60818

Ibrahim, K. G., Hudu, S. A., Jega, A. Y., Taha, A., Yusuf, A. P., Usman, D., & Erlwanger, K. H. (2024). Thymoquinone: A comprehensive review of its potential role as a monotherapy for metabolic syndrome. Iranian Journal of Basic Medical Sciences, 27(10), 1214.‏ https://doi.org/10.22038/ijbms.2024.77203.16693

Ko, S. H. (2024). Effects of heat stress-induced sex hormone dysregulation on reproduction and growth in male adolescents and beneficial foods. Nutrients, 16(17), 3032.‏ https://doi.org/10.3390/nu16173032

Li, S., Chen, L. N., Zhu, H. J., Feng, X., Xie, F. Y., Luo, S. M., & Ma, J. Y. (2021). Single-cell RNA sequencing analysis of mouse follicular somatic cells. Biology of reproduction, 105(5), 1234-1245.‏ https://doi.org/10.1093/biolre/ioab163

Manoharan, N., Parasuraman, R., Jayamurali, D., Muthusamy, P., & Govindarajulu, S. (2024). Role of Thymoquinone on sleep restriction and its mitigating effect on leptin-mediated signaling pathway in rat brain. Molecular Biology Reports, 51(1), 769.‏ https://doi.org/10.1007/s11033-024-09699-9

Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., & D’Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48-78.‏ https://doi.org/10.3390/oxygen2020006

Mohammad, H. A., Ajaj, E. A., & Gharban, H. A. (2022). The first study on confirmation and risk factors of acute and chronic canine distemper in stray dogs in Wasit Province, Iraq, using enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction. Veterinary World, 15(4), 968. https://doi.org/10.14202/vetworld.2022.968-974

Nelson, V. K., Paul, S., Roychoudhury, S., Oyeyemi, I. T., Mandal, S. C., Kumar, N., & Pal, M. (2022). Heat shock factors in protein quality control and spermatogenesis. In Oxidative Stress and Toxicity in Reproductive Biology and Medicine: A Comprehensive Update on Male Infertility (Vol. 2, pp. 181-199). Cham: Springer International Publishing.‏

Neunert, G., Kamińska, W., & Nowak-Karnowska, J. (2025). Evaluating the Thymoquinone Content and Antioxidant Properties of Black Cumin (Nigella sativa L.) Seed Oil During Storage at Different Thermal Treatments. Applied Sciences, 15(1), 377.‏ https://doi.org/10.3390/app15010377

Okoh, O. S., Akintunde, J. K., Akamo, A. J., & Akpan, U. (2025). Thymoquinone inhibits Neuroinflammatory mediators and vasoconstriction injury via NF-κB dependent NeuN/GFAP/Ki-67 in hypertensive Dams and F1 male pups on exposure to a mixture of Bisphenol-A analogues. Toxicology and Applied Pharmacology, 494, 117162.‏ https://doi.org/10.1016/j.taap.2024.117162

Oliveira, C. P., Sousa, F. C. D., Silva, A. L. D., Schultz, É. B., Valderrama Londoño, R. I., & Souza, P. A. R. D. (2025). Heat Stress in Dairy Cows: Impacts, Identification, and Mitigation Strategies—A Review. Animals, 15(2), 249.‏ https://doi.org/10.3390/ani15020249

Omidi, A., Nazifi, S., Rasekh, M., & Zare, N. (2024). Heat-shock proteins, oxidative stress, and antioxidants in one-humped camels. Tropical Animal Health and Production, 56(1), 29.‏ https://doi.org/10.1007/s11250-023-03876-x

Pawar, R. R., Pawar, S. S., Yeole, R. B., Bhutada, S. A., Dahikar, S. B., & Kovaleva, E. G. (2025). Unveiling the power of nigella sativa: a comprehensive review of its phytochemical antioxidant and anticancer potential. The School on Biotechnology for Students, Ph. D. students and Young scientists.

Ramineedu, K., Sankaran, K. R., Mallepogu, V., Rendedula, D. P., Gunturu, R., Gandham, S., & Meriga, B. (2024). Thymoquinone mitigates obesity and diabetic parameters through regulation of major adipokines, key lipid metabolizing enzymes and AMPK/p-AMPK in diet-induced obese rats. 3 Biotech, 14(1), 16.‏ https://doi.org/10.1007/s13205-023-03847-x

Sadeghzadeh, Z., Ostadrahimi, A., Ranjbar, M., & Farshbaf-Khalili, A. (2023). The Efficacy of Nigella sativa L. and Curcumin Nanomicelle Alone or Together on Lipid Profile, Glycemic Control Indices, and Serum 17-Β Estradiol in Postmenopausal Women. Journal of Caring Sciences, 12(3), 163. https://doi.org/10.34172/jcs.2023.31875

Sadiq, I. Z. (2023). Free radicals and oxidative stress: Signaling mechanisms, redox basis for human diseases, and cell cycle regulation. Current molecular medicine, 23(1), 13-35.‏ https://doi.org/10.2174/1566524022666211222161637

Sukatendel, K., Hasibuan, R. H., Siregar, M. F., Faradina, D., Edianto, D., Lintang, L. S., & Inriani, V. (2025). The effect of Nigella sativa seed extract on estradiol, FSH levels, and vaginal maturity index in menopausal women: A randomized controlled trial. Narra J, 5(1), e1399-e1399.‏ https://doi.org/10.52225/narra.v5i1.1399

Sukhan, Z. P., Sharker, M. R., Cho, Y., Hossen, S., Choi, K. S., & Kho, K. H. (2021). Thermal stress affects gonadal maturation by regulating GnRH, GnRH receptor, APGWamide, and serotonin receptor gene expression in male pacific abalone, Haliotis discus hannai during breeding season. Frontiers in Marine Science, 8, 664426.‏ https://doi.org/10.3389/fmars.2021.664426

Tariq, M., Saeed, S., Victor, K. K. A. S., Fatima, A., & Mao, D. (2025). Heat Stress and Its Impact on Corpus Luteum (CL) Function and Reproductive Efficiency in Mammals: A Critical Review. Reproductive Sciences, 1-16.‏ https://doi.org/10.1007/s43032-025-01787-w

Thangamany, M., Janakiraman, A. K., Aung, Y. N., Shin, M. T., & Saminathan, K. (2025). Ameliorative effect of Yuganzi (Emblica officinalis) on chronic low-dose acrylamide-induced reproductive toxicity in male and female rats. Pharmacological Research-Modern Chinese Medicine, 14, 100569.‏ https://doi.org/10.1016/j.prmcm.2024.100569

Yan, L., Hu, M., Gu, L., Lei, M., Chen, Z., Zhu, H., & Chen, R. (2022). Effect of heat stress on egg production, steroid hormone synthesis, and related gene expression in chicken preovulatory follicular granulosa cells. Animals, 12(11), 1467.‏ https://doi.org/10.3390/ani12111467

Downloads

Views

48

Downloads

20