Research Article

Microscopic and Molecular Identification of Plasmodium falciparum in Patients of Wasit Province, Iraq

Authors

Abstract

The study created electron transfer PCR, using self-quenching primers to identify several species of Plasmodium. The potential use of polymerase chain reaction (PCR) for the molecular identification of malaria parasites in Wasit, Iraq. QIAGEN extracted DNA from desiccated blood spots. PCR analysis was conducted twice on each of the 200 samples. Positive samples had a CT value of 60 or below. Fifty samples were evaluated for accuracy using nested PCR. A TaqMan-based real-time PCR technique was used on these samples. PCR successfully detected 20 positive samples from a total of 200. The samples tested positive by both nested and TaqMan methodologies. Neither PCR nor TaqMan successfully identified a positive sample in a selection of 50; however, nested PCR did. In conclusion, Nested PCR has more sensitivity than PET-PCR; nonetheless, it is not the optimal selection for high-throughput sample screening. Nested PCR serves as an effective alternative test for the quick screening of several samples in the laboratory due to its straightforward implementation and cost-effectiveness.

Keywords:

Malaria Molecular PCR Wasit

Article information

Journal

Journal of Agriculture, Aquaculture, and Animal Science

Volume (Issue)

2(1), (2025)

Pages

117-122

Published

27-04-2025

How to Cite

Abdulwahed, T. K. (2025). Microscopic and Molecular Identification of Plasmodium falciparum in Patients of Wasit Province, Iraq. Journal of Agriculture, Aquaculture, and Animal Science, 2(1), 117-122. https://doi.org/10.69739/jaaas.v2i1.468

References

Ahmed, A. M., & Jalil, A. T. (2022). Investigating the Protective Role of Rhodanese Enzyme Against Cyanide, the Cytotoxic by-product of Amygdalin. HDF and L929 Cell Lines. Lett Drug Des Discov [Internet], 19. https://www.eurekaselect.com/article/124333

Alwan, A. M., & Afshari, J. T. (2022). [Retracted] In Vivo Growth Inhibition of Human Caucasian Prostate Adenocarcinoma in Nude Mice Induced by Amygdalin with Metabolic Enzyme Combinations. BioMed Research International, 2022(1), 4767621.

Alwan, A. M., Afzaljavan, F., Tavakol Afshari, J., Homaei Shandiz, F., Barati Bagherabad, M., Vahednia, E., ... & Pasdar, A. (2021). The impact of CYP19A1 variants and haplotypes on breast cancer risk, clinicopathological features and prognosis. Molecular genetics & genomic medicine, 9(7), e1705.

Aryal, M., Adhikari, R. B., Kandel, P., Ghimire, T. R., Khadka, D., Maharjan, J., ... & Pandey, K. (2022). First report on the molecular detection of Entamoeba bovis from the endangered wild water buffalo (Bubalus arnee) in Nepal. Veterinary Medicine and Science, 8(2), 799-807.

Belachew, M., Wolde, M., Nega, D., Gidey, B., Negash, L., Assefa, A., ... & Abera, A. (2022). Evaluating performance of multiplex real time PCR for the diagnosis of malaria at elimination targeted low transmission settings of Ethiopia. Malaria Journal, 21, 1-9.

Bhullar, S., & Mishra, N. (2022). Molecular assays for determining sulphadoxine-pyrimethamine drug resistance in India: a systematic review. Parasitology Research, 121(10), 2765-2774.

Cohee, L. M., Peterson, I., Buchwald, A. G., Coalson, J. E., Valim, C., Chilombe, M., ... & Laufer, M. K. (2022). School-based malaria screening and treatment reduces Plasmodium falciparum infection and anemia prevalence in two transmission settings in Malawi. The Journal of Infectious Diseases, 226(1), 138-146.

Deo, D. A., Herningtyas, E. H., Intansari, U. S., Perdana, T. M., Murhandarwati, E. H., & Soesatyo, M. H. (2022). Difference between microscopic and PCR examination result for malaria diagnosis and treatment evaluation in Sumba Barat Daya, Indonesia. Tropical Medicine and Infectious Disease, 7(8), 153.

Deora, N., Kar, S., & Sinha, A. (2022). Multiplexing for Plasmodium spp.? Think Again! Comment on Bhowmick et al. Dry Post Wintertime Mass Surveillance Unearths a Huge Burden of P. vivax, and Mixed Infection with P. vivax P. falciparum, a Threat to Malaria Elimination, in Dhalai, Tripura, India. Pathogens 2021, 10, 1259. Pathogens, 11(7), 737.

Fitri, L. E., Widaningrum, T., Endharti, A. T., Prabowo, M. H., Winaris, N., & Nugraha, R. Y. B. (2022). Malaria diagnostic update: From conventional to advanced method. Journal of Clinical Laboratory Analysis, 36(4), e24314.

Gharban, A. J., Al-Shaeli, S. J., Al-Abedi, G. J., Abbas, Z. R., & Jassim, A. F. (2022). Microscopic investigation of bovine haemoparasites in Wasit Province, Iraq. Annals of the Romanian Society for Cell Biology, 26(01), 1143-1159.

Gharban, H. A. (2022). Clinical and serological diagnosis of bovine hypodermosis in Wasit Province. Revista Electronica de Veterinaria, 23(3), 457-466.

Gharban, H. A. (2023). Molecular prevalence and phylogenetic confirmation of bovine trichomoniasis in aborted cows in Iraq. Veterinary world, 16(3), 580.

Gharban, H. A., & Ajaj, E. A. (2024). Molecular detection of Schistosoma spp. in cattle urine in Mosul, Iraq. Egyptian Journal of Veterinary Sciences, 56(3), 449-456.

Kamau, E., Bennett, J. W., & Yadava, A. (2022). Safety and Tolerability of Mosquito Bite-Induced Controlled Human Infection with Plasmodium vivax in Malaria-Naive Study Participants—Clinical Profile and Utility of Molecular Diagnostic Methods. The Journal of Infectious Diseases, 225(1), 146-156.

Kann, S., Zabala-Monterroza, W., García, C., Concha, G., Landt, O., Hahn, A., ... & Frickmann, H. (2022). Comparison of the influence of different nucleic acid extraction assays on the sensitivity of Trypanosoma cruzi-specific real-time PCR. Microorganisms, 10(8), 1554.

Kumari, P., Sinha, S., Gahtori, R., Quadiri, A., Mahale, P., Savargaonkar, D., ... & Anvikar, A. R. (2022). Comparative assessment of diagnostic performance of cytochrome oxidase multiplex PCR and 18S rRNA Nested PCR. The Korean journal of parasitology, 60(4), 295-299.

Martín-Ramírez, A., Lanza, M., Hisam, S., Perez-Ayala, A., & Rubio, J. M. (2022). Usefulness of a commercial LAMP assay for detection of malaria infection, including Plasmodium knowlesi cases, in returning travelers in Spain. BMC Research Notes, 15(1), 147.

Mirahmadi, H., Khorashad, A. S., Yusefnia, H., Badirzadeh, A., Fallahi, S., Azizi, S. G., ... & Solgi, R. (2022). Identification and determination of malaria infection in asymptomatic person in endemic Area of Sistan & Balouchistan Province, Iran. Research Square.

Alwan, M., & Afzaljavan, F. (2022). Significance of the estrogen hormone and single nucleotide polymorphisms in the progression of breast cancer among female. Archives of Razi Institute, 77(3), 943.

Moin-Vaziri, V., Djadid, N. D., Hoosh-Deghati, H., Atta, H., Raz, A. A., Seyyed-Tabaei, S. J., ... & Zakeri, S. (2022). Molecular detection of Plasmodium infection among Anophelinae mosquitoes and differentiation of Biological forms of Anopheles Stephensi collected from malarious areas of Afghanistan and Iran. Ethiopian journal of health sciences, 32(2), 269-278.

Monteiro, W., Karl, S., Kuehn, A., Almeida, A., White, M., Vitor-Silva, S., ... & Lacerda, M. (2022). Prevalence and force of Plasmodium vivax blood-stage infection and associated clinical malaria burden in the Brazilian Amazon. Memórias do Instituto Oswaldo Cruz, 117, e210330.

Nema, S., Singh, A., Krishna, S., Poriya, R., Dubey, S., Ali, N. A., ... & Bharti, P. K. (2022). Unreported mixed Plasmodium species infection may increase vivax malaria in India: a challenge for malaria elimination. Transactions of The Royal Society of Tropical Medicine and Hygiene, 116(7), 600-603.

Obaldía, N., Barahona, I., Lasso, J., Avila, M., Quijada, M., Nuñez, M., & Marti, M. (2022). Comparison of PvLAP5 and Pvs25 qRT-PCR assays for the detection of Plasmodium vivax gametocytes in field samples preserved at ambient temperature from remote malaria endemic regions of Panama. PLoS neglected tropical diseases, 16(4), e0010327.

Osagiede, N. O., Yayock, H. C., & Ndife, J. (2022). Molecular detection of the plasmodium falciparum obtained from out-patients from selected hospitals in kaduna state. Fudma journal of sciences, 6(1), 351-357.

Razooqi, M. A., Gharban, H. A. J., & Al-Kaabi, M. A. F. (2022). Molecular and seroprevalence of toxoplasmosis in goats’ blood and milk in Iraq. Archives of Razi Institute, 77(5), 1749.

Schneider, R., Lamien-Meda, A., Auer, H., Wiedermann-Schmidt, U., Chiodini, P. L., & Walochnik, J. (2022). A Rapid FRET Real-Time PCR Protocol for Simultaneous Quantitative Detection and Discrimination of Human Plasmodium Parasites. Bio-protocol, 12(7), e4381-e4381.

Shankar, H., & Kumar, G. (2022). Truenat: An affordable and user-friendly option for screening of sub-microscopic Plasmodium infections in low resource countries. The Lancet Regional Health-Southeast Asia, 5.

Tao, Z. Y., Zhang, P. Y., Zhang, L., Li, C. C., Hu, R., Zhu, H. W., ... & Fang, Q. (2022). The comparison of PCR kits for the detection of erythrocytic parasites on filter paper. Journal of Tropical Medicine, 2022(1), 5715436.

Weinreich, F., Hagen, R. M., Loag, W., Maïga-Ascofaré, O., Dekker, D., Frickmann, H., & Loderstädt, U. (2022). Limited Reliability of the Molecular Detection of Plasmodium spp. from Incubated Blood Culture Samples for Forensic Purposes. Microorganisms, 10(2), 406.

Zhao, Y., Zhao, Y., Sun, Y., Fan, L., Wang, D., Wang, H., ... & Zheng, Z. (2022). A direct, sensitive and high-throughput genus and species-specific molecular assay for large-scale malaria screening. Infectious Diseases of Poverty, 11(1), 25.

Downloads

Views

18

Downloads

15