Review Article

A Review of the Effects of Salicylic Acid Spray and Sulfur Fertilization on Strawberry Growth and Yield

Authors

  • Jassim M. A. Al-A'areji Department of Horticulture and Landscape Architecture, College of Agriculture and Forestry, University of Mosul, Iraq

    jacksonmisiko@gmail.com

  • Ahmed T. Al-Abbasi Department of Horticulture and Landscape Architecture, College of Agriculture and Forestry, University of Mosul, Iraq
  • Yusra M. Shalih Department of Horticulture and Landscape Architecture, College of Agriculture and Forestry, University of Mosul, Iraq

Abstract

Salicylic acid (SA) is a non-enzymatic phenolic compound that functions as an endogenous plant hormone. It plays a pivotal role in modulating plant responses under stress conditions by regulating metabolic activities, maintaining osmotic balance, promoting stomatal closure, and reducing transpiration and ethylene production. Additionally, SA enhances the activity of antioxidant systems, facilitates ion uptake, and increases the accumulation of insoluble sugars by inhibiting glucokinase activity. It also stimulates certain defense-related enzymes, strengthens plant resistance against fungal pathogens, and induces structural modifications in leaves and chloroplasts. These physiological changes collectively contribute to improved plant growth, higher yields, and better fruit quality. Sulfur (S), classified as a macronutrient, is essential for plant development due to its role in synthesizing sulfur-containing amino acids such as methionine, cysteine, and cystine, which together constitute approximately 90% of sulfur content in plant tissues. Sulfur is also required for the biosynthesis of coenzyme A, a critical component in the metabolism of amino acids, fatty acids, and intermediates of the citric acid cycle. Moreover, it is vital for chlorophyll formation and is a structural component of iron-sulfur (Fe-S) proteins within chloroplasts, including ferredoxin. In calcareous soils, where pH levels are typically ≥ 7.2, sulfur application effectively lowers soil pH, thereby enhancing the availability of micronutrients that are crucial for optimal plant growth and development.

Keywords:

Salicylic Acid Sulfur Strawberry Yield

Article information

Journal

Journal of Agriculture, Aquaculture, and Animal Science

Volume (Issue)

2(2), (2025)

Pages

15-22

Published

18-07-2025

How to Cite

Al-A'areji, J. M. A., Al-Abbasi, A. T., & Shalih, Y. M. (2025). A Review of the Effects of Salicylic Acid Spray and Sulfur Fertilization on Strawberry Growth and Yield. Journal of Agriculture, Aquaculture, and Animal Science, 2(2), 15-22. https://doi.org/10.69739/jaaas.v2i2.727

References

Abu-Thahi, Y. M., & A. Y. Moayad (1988). Guide of Plant Nutrition. Dar Al-Kutub for Printing and Publishing. Mosul Univ. Iraq.

Afroz, C. A., Shimul, M. A. H., Ikrum, M., Siddiky, M. A., & Razzaque, M. A. (2016). Effects of nitrogen, phosphorus, potassium, and sulphur on growth yield and nutrient content of strawberry (Fragaria ananassa). Journal of Environmental Science and Natural Resources, 9(1), 99-108.‏

Al-Aareji, J. M., & Bani, S. H. (2020, August). Rsponse of Dixired Peach Trees to Sulphur and Iron Application. In IOP Conference Series: Earth and Environmental Science (Vol. 553, No. 1, p. 012023). IOP Publishing.‏

Al-Aa’reji, J. M. (2010). Effect of organic fertilizer, urea, and sulfur on vegetative growth and concentration of some nutrient of young peach trees cv. International Journal of Plant Research, 10(2), 76-86. https://doi.org/10.5923/j.plant.20201002.01

Al-Aa’ reji., J. M. A., & Al-Douri, E. F. S. (2009a). Effect of sulphur, nitrogen, and ascorbic acid on soil pH and concentration of available nutrients in the orchard soil of Anna and Vistabella apple cvs. Tikrit Journal for Agricultural Sciences, 9(1), 187–204 .

Al-Aa’reji., J. M. A., & Al-Douri, E. F. S. (2009b). Effect of sulphur, nitrogen, and ascorbic acid on vegetative growth and mineral content of young apple trees, cvs. Anna and Vistabella . 2-leaves chlorophyll and leaves and branches sugars. Tikrit Journal for Agricultural Sciences, 9(2), 183–199.

Al-Bayoumi, Abdel Aziz Al-Saeed, Yousry Al-Sayed Saleh, and Osama Handawi Sayed (2000). Fundamentals of Botany, Arab House for Publishing and Distribution, Egypt.

Al-Karawi, H. N., Salman, F. A., & Al-Deheimawi, A. J. (2023). The Effect of Foliar Application of Organic Matter and Salicylic Acid on The Growth and Yield in Strawberry (Fragaria ananassa). In IOP Conference Series: Earth and Environmental Science, 910(1), 012081. IOP Publishing.‏

Al-Maeni, A. M. T. (2024). Soil Fertility and Fertilization Under Arid and Semi-arid Region Conditions. Majdi Prin. Mosul. Iraq.

Almutairi, K. F., Alharbi, A. R., Abdelaziz, M. E., & Mosa, W. F. (2024). Salicylic Acid and Chitosan Effects on Fruit Quality When Applied to Fresh Strawberry or During Different Periods of Cold Storage. BioResources, 19(3).

Amar, S. (2003). Fruit Physiology and Production. Kalyani Publishers. New Delhi. India.

Arfan, M., Athar, H. R., & Ashraf, M. (2007). Does exogenous application of salicylic acid through the rooting medium modulate growth and photosynthetic capacity in two differently adapted spring wheat cultivars under salt stress?. Journal of plant physiology, 164(6), 685-694.‏

Borsani, O., Valpuesta, V., & Botella, M. A. (2001). Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant physiology, 126(3), 1024-1030.‏

Dong, S., Cheng, L., Scagel, C. F., & Fuchigami, L. H. (2002). Nitrogen absorption, translocation and distribution from urea applied in autumn to leaves of young potted apple (Malus domestica) trees. Tree physiology, 22(18), 1305-1310.

Erdal, I., Kepenek, K., & Kizilgöz, I. (2006). Effect of elemental sulphur and sulphur-containing waste on the iron nutrition of strawberry plants grown in a calcareous soil. Biological agriculture & horticulture, 23(3), 263-272.‏

Food and Agriculture Organization (FAO). FAOSTAT (Statistics) 2024. https://www.fao.org/faostat/en/#data/QCL

Giampieri, F., Alvarez-Suarez, J. M., & Battino, M. (2014). Strawberry and human health: Effects beyond antioxidant activity. Journal of agricultural and food chemistry, 62(18), 3867-3876.‏

Haghshenas, M., Nazarideljou, M. J., & Shokoohian, A. (2020). Phytochemical and quality attributes of strawberry fruit under osmotic stress of nutrient solution and foliar application of putrescine and salicylic acid. International Journal of Horticultural Science and Technology, 7(3), 263-278.‏

Hartwigsen, J. A., & Evans, M. R. (2000). Humic acid seed and substrate treatments promote seedling root development. HortScience, 35(7), 1231-1233.‏

Havlin, L. L., Beaton, J. D., Tisdale, S. L., & Nelson, W. L. (2005). Soil Fertility and Fertilizers (7th ed.). Upper Saddle River, New Jersey 07458.

Hayat, S., & Ahmad, A. (2007). Salycilic acid : a plant hormone (ed.). Springer. Dortrecht, the Netherlands.

Hayat, S., Hayat, Q., Alyemeni, M. N., & Ahmad, A. (2014). Salicylic acid enhances the efficiency of nitrogen fixation and assimilation in Cicer arietinum plants grown under cadmium stress. Journal of Plant Interactions, 9(1), 35-42.

Huang, D. J., Chun-Der, L. I. N., Hsien-Jung, C. H. E. N., & Yaw-Huei, L. I. N. (2004). Antioxidant and antiproliferative activities of sweet potato (Ipomoea batatas [L.] LamTainong 57’) constituents. Botanical Bulletin of Academia Sinica, 45, 179-186.

Hurley, A. K., Walser, R. H., Davis, T. D., & Barney, D. L. (1986). Net photosynthesis, chlorophyll, and foliar iron in apple trees after injection with ferrous sulfate. HortScience, 21(4), 1029-1031.

Jamali, B., Eshghi, S., & Tafazoli, E. (2011). Vegetative and reproductive growth of strawberry plants cv.‘Pajaro’ affected by salicylic acid and nickel. Journal of Agricultural Science and Technology, 13(6), 895-904.‏

Janda, T., Szalai, G., & Pál, M. (2020). Salicylic acid signalling in plants. International Journal of Molecular Sciences, 21(7), 2655.‏

Jiang, K., & Asami, T. (2018). Chemical regulators of plant hormones and their applications in basic research and agriculture. Bioscience, biotechnology, and biochemistry, 82(8), 1265-1300.‏

Karlidag, H., Yildirim, E., & Turan, M. (2009a). Exogenous applications of salicylic acid affect the quality and yield of strawberries grown under antifrost heated greenhouse conditions. Journal of Plant Nutrition and Soil Science, 172(2), 270-276.‏

Karlidag, H., Yildirim, E., & Turan, M. (2009b). Salicylic acid ameliorates the adverse effects of salt stress on strawberry. Scientia Agricola, 66, 180-187.‏

Kazan, K., & Manners, J. M. (2012). JAZ repressors and the orchestration of phytohormone crosstalk. Trends in plant science, 17(1), 22-31.

Khan, W., Prithiviraj, B., & Smith, D. L. (2003). Photosynthetic responses of corn and soybean to foliar application of salicylates. Journal of plant physiology, 160(5), 485-492.‏

Luo, Y., Liu, M., Cao, J., Cao, F., & Zhang, L. (2022). The role of salicylic acid in plant flower development. Forestry Research, 2, 14.

Mady, M. A. (2009). Effect of Foliar Application with Salicylic Acid and Vitamin E on Growth and Productivity of Tomato (Lycopersicon esculentum, Mill.) Plant. Journal of Plant Production, 34(6), 6715-6726.‏

Maruri-López, I., Aviles-Baltazar, N. Y., Buchala, A., & Serrano, M. (2019). Intra- and extracellular journey of the phytohormone salicylic acid. Frontiers in Plant Science, 423.

Meena, B. ; T. Marimuthu and R.Velazhan. (2001). Salycilic acid induce systmic arsistant in groundnut against late leaf spot caused by Cercosporidium personatum. Journal of Mycology and Plant Pathology, 31, 139-145.

Mohammed, A. K. (1985). Plant Physiology (2nd ed.). Dar Al-Kutub for Printing and Publishing. Mosul Univer.

Naeem, M., Basit, A., Ahmad, I., Mohamed, H. I., & Wasila, H. (2020). Effect of Salicylic Acid and Salinity Stress on the Performance of Tomato Plants. Gesunde Pflanzen, 72(4).‏

Narayan, O. P., Kumar, P., Yadav, B., Dua, M., & Johri, A. K. (2022). Sulfur nutrition and its role in plant growth and development. Plant Signaling & Behavior, 2030082.

Nijjar, G. G. (1985). Nutrition of Fruit Trees (pp. 52-137). Kylyani Publishers, New Delhi-Indian.

Onofre, R. B., Gadoury, D. M., & Peres, N. A. (2021). High efficacy and low risk of phytotoxicity of sulfur in the suppression of strawberry powdery mildew. Plant Health Progress, 22(2), 101-107.‏

Palei, S., Das, K., Sahoo, K., Dash, D. K., & Swain, S. (2016). Influence of plant growth regulators on strawberry Cv. Chandler under Odisha condition. International Journal of Recent Scientific Research, 7, 9945-9948.

Piri, I., Rahimi, A., Tavassoli, A., Rastegaripour, F., & Babaeian, M. (2012). Effect of sulphur fertilizer on sulphur uptake and forage yield of Brassica juncea in condition of different regimes of irrigation. African journal of agricultural research, 7(6), 958-963.

Porra, R. J., & Meisch, H. U. (1984). The biosynthesis of chlorophyll. Trends in biochemical sciences, 9(3), 99-104.

Rivas-San Vicente, M., & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321-3338.‏

Roozkhosh, M., Khalil Tahmasebi, B., Soleimani, S., Meighani, H., Eshraghi-Nejad, M., Afshar Manesh, G. R., & Vahidi Nia, M. A. (2024). Salicylic acid can enhance quality characteristics, growth, and productivity of strawberry (Fragaria × ananassa cv. Camarosa) under drought stress conditions. Plant Process and Function, 12(58), 103-115.‏

Sah, A., Madhavi, M., Sivakumar, V., Subbaramamma, P., & Sekhar, V. (2024). Influence Of Pre Harvest Application Of Hexanal And Salicylic Acid At Different Storage Temperatures On Fruit Quality And Shelf Life Of Strawberry (Fragaria Ananassa) Cv. Winter Dawn. Plant Archives (09725210), 24(2).

Samadi, S., Habibi, G., & Vaziri, A. (2019). Effects of exogenous salicylic acid on antioxidative responses, phenolic metabolism, and photochemical activity of strawberry under salt stress. Iranian Journal of Plant Physiology, 9(2), 2685-2694.‏

Santiago, F. E. M., Silva, M. L. D. S., Ribeiro, F. D. O., Cipriano, P. E., & Guilherme, L. R. G. (2018). Influence of sulfur on selenium absorption in strawberry. Acta Scientiarum. Agronomy, 40.‏

Santos, B. M. (2013). Response of Strawberries to preplant sulfur fertilization in sandy soils. International Journal of Fruit Science, 13(3), 326-333.‏

Silva, M. L. S., de Cássia Piccolo, M., & Trevizam, A. R. (2013). Gypsum as a source of sulfur for strawberry crops. Semina: Ciências Agrárias, 34(4), 1683-1694.

Singh, A., & Singh, P. K. (2008). Salicylic acid induced biochemical changes in Cucumber cotyledons. Indian Journal of Agricultural Biochemistry, 21(1and2), 35-38.‏

Sofy, M. R., Seleiman, M. F., Alhammad, B. A., Alharbi, B. M., & Mohamed, H. I. (2020). Minimizing adverse effects of Pb on maize plants by combined treatment with jasmonic, salicylic acids, and proline. Agronomy, 10(5), 699.‏

Soppelsa, S., Gasser, M., & Zago, M. (2023). Optimizing Planting Density in Alpine Mountain Strawberry Cultivation in Martell Valley, Italy. Agronomy, 13(5), 1422.

Tabatabai, M. A.(1994). Soil Enzymes. P:775-833 in Weaver R.W. (Ed). Methods of Soil Analysis Part 2. Microbiological and Biochemical Properties 3rd ed. ASA, Madison, WI.

Tama, M. H., & Hameed, I. H. (2021). Effect of humic acid and sulfur on the biochemical traits of date palm (Phoenix dactylifera L.) Al-Sayer cultivar grown in saline soil. International Journal of Agricultural & Statistical Sciences, 17(1).‏

Ul Hasan, S. Z., Hassan, I., Khan, M. A., & Jilani, G. (2024). Effect of salicylic acid application on growth, production, fungal decay, and overall quality of strawberry. Plant Protection, 8(4), 729-739.

Wang, W., Wang, S., & Wang, M. (2019). Status and extension experience protected strawberry cultivation technology in Daxing District. J. Veg., 4, 67–70.

Wani, A. B., Chadar, H., Wani, A. H., Singh, S., & Upadhyay, N. (2017). Salicylic acid to decrease plant stress. Environmental Chemistry Letters, 15, 101-123.‏

Yang, J., Su, D., Wei, S., Chen, S., Luo, Z., Shen, X., & Cui, X. (2020). Current and future potential distribution of wild strawberry species in the biodiversity hotspot of Yunnan Province, China. Agronomy, 10(7), 959.‏

Yousif, D. Y. M., & Yousif, M. (2019). Evaluation of salicylic acid solution on the fungus Botrytis cinerea that caused strawberry gray mold. Plant Archives, 19(1), 229-238.‏

Youssef, S. M. S., Abu El-Azm, N. A. I., & Abd Elhady, S. A. E. (2017). Frequent foliar sprayings of salicylic acid with elevated concentrations enhance growth, yield, and fruit quality of strawberry (Fragaria x ananassa Duch. cv Festival) plants. Egyptian Journal of Horticulture, 44(1), 61-74.‏

Zhang, Y., Li, S., Deng, M., Gui, R., Liu, Y., Chen, X., & Tang, H. (2022). Blue light combined with salicylic acid treatment maintained the postharvest quality of strawberry fruit during refrigerated storage. Food chemistry: X, 15, 100384.‏

Zhao, F. J., Tausz, M., & De Kok, L. J. (2008). Role of sulfur for plant production in agricultural and natural ecosystems. Sulfur metabolism in phototrophic organisms, 417-435.

Downloads

Views

18

Downloads

13