Article section
Phenotypic Analysis and Characterization Methods for Transgenic Setaria viridis: From Morphology to Molecular Markers: A Comprehensive Review
Abstract
Setaria viridis (green foxtail) has become a principal C4 model for functional genomics and translational crop research because its short life cycle and reliable transformation protocols enable rapid production of transgenic lines. Linking those genotypes to traits, however, demands a multilayered phenotypization strategy. This narrative review synthesizes current approaches that span traditional morphology, developmental staging, and precision measurement of vegetative and reproductive traits. It describes frameworks for assessing physiological performance, such as gas-exchange assays and chlorophyll-fluorescence imaging, that translate genetic changes into functional outcomes. Recent advances in automated, high-throughput phenotyping platforms are outlined, illustrating how time-series imaging accelerates large-scale trait discovery. The review also examines experimental designs for evaluating abiotic-stress responses, highlights biochemical assays and metabolite-profiling techniques that reveal underlying metabolic adjustments, and details molecular-marker systems that couple genotype with phenotype. By integrating these complementary methods, researchers can build comprehensive genotype–phenotype maps in S. viridis, thereby streamlining gene validation and informing next-generation plant-biotechnology applications.
Keywords:
Genotype High-Throughput Imaging Phenotype Mapping Physiological Assays Setaria Viridis Transgenic Phenotyping
Article information
Journal
Journal of Agriculture, Aquaculture, and Animal Science
Volume (Issue)
2(2), (2025)
Pages
53-65
Published
Copyright
Copyright (c) 2025 Chinechendo N. Eze, Richmore Chiamaka Ibeh, Juwon I. Hassan, Samuel Osabutey (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Acharya, B. R., Roy Choudhury, S., Estelle, A. B., Vijayakumar, A., Zhu, C., Hovis, L., & Pandey, S. (2017). Optimization of Phenotyping Assays for the Model Monocot Setaria viridis. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02172
Danforth Center. (n.d.). The Phenotyping Facility. The Donald Danforth Plant Science Center. Retrieved June 24, 2025, from https://www.danforthcenter.org/our-work/core-facilities/phenotyping/
de Souza, W. R., Martins, P. K., Freeman, J., Pellny, T. K., Michaelson, L. V., Sampaio, B. L., …, & Molinari, H. B. C. (2018). Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytologist, 218(1), 81–93. https://doi.org/10.1111/nph.14970
Fahlgren, N. (2015). A Versatile Phenotyping System and Analytics Platform Reveals Diverse Temporal Responses to Water Availability in Setaria. Molecular Plant, . https://doi.org/10.1016/j.molp.2015.06.005
Gaillard, M., Miao, C., Schnable, J. C., & Benes, B. (2020). Voxel Carving Based 3D Reconstruction of Sorghum Identifies Genetic Determinants of Radiation Interception Efficiency (p. 2020.04.06.028605). bioRxiv. https://doi.org/10.1101/2020.04.06.028605
Gehan, M. A., Fahlgren, N., Abbasi, A., Berry, J. C., Callen, S. T., Chavez, L., Doust, A. N., Feldman, M. J. ...., & Sax, T. (2017). PlantCV v2: Image analysis software for high-throughput plant phenotyping. PeerJ, 5, e4088. https://doi.org/10.7717/peerj.4088
Guedes, F. A. D. F., Nascimento, L. B. D. S., Costa, M. P., Macrae, A., Alves-Ferreira, M., Caldana, C., & Reinert, F. (2023). Comparative Primary Metabolite Profiling of Setaria viridis Reveals Potential Markers to Water Limitation. Agriculture, 13(3), 660. https://doi.org/10.3390/agriculture13030660
Huang, P., Shyu, C., Coelho, C. P., Cao, Y., & Brutnell, T. P. (2016). Setaria viridis as a Model System to Advance Millet Genetics and Genomics. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.01781
Junqueira, N. E. G., Bezerra, A. C. M., Travassos-Lins, J., Esteves, J.-M. F., Gomes, J.-D. F., Ferreira, M. A., & Reinert, F. (2025). Phenological growth stages according to the BBCH-scale as a powerful tool for differentiating among CRISPR/Cas9 mutated lineages of the model plant Setaria viridis (L.) P. Beauv. (Poaceae). Botany, 103, 1–9. https://doi.org/10.1139/cjb-2024-0022
Kaggwa, R. J., Jiang, H., Ryan, R. A., Zahller, J. P., Kellogg, E. A., Woodford-Thomas, T., & Callis-Duehl, K. (2021). Exploring Grass Morphology & Mutant Phenotypes Using Setaria viridis. The American Biology Teacher, 83(5), 311–319. https://doi.org/10.1525/abt.2021.83.5.311
Kaplan, S. (1995). The restorative benefits of nature: Toward an integrative framework. Journal of Environmental Psychology, 15(3), 169–182. https://doi.org/10.1016/0272-4944(95)90001-2
Lefebvre, H. (1991). The production of space. Blackwell.
Li, A., Zhu, L., Xu, W., Liu, L., & Teng, G. (2022). Recent advances in methods for in situ root phenotyping. PeerJ, 10, e13638. https://doi.org/10.7717/peerj.13638
Li, W., Tang, S., Zhang, S., Shan, J., Tang, C., Chen, Q., Jia, G., Han, Y., Zhi, H., & Diao, X. (2016). Gene mapping and functional analysis of the novel leaf color gene SIYGL1 in foxtail millet [ Setaria italica (L.) P. Beauv]. Physiologia Plantarum, 157(1), 24–37. https://doi.org/10.1111/ppl.12405
Mauro-Herrera, M., & Doust, A. N. (2016). Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria. PLOS ONE, 11(3), e0151346. https://doi.org/10.1371/journal.pone.0151346
Mauro-Herrera, M., Wang, X., Barbier, H., Brutnell, T. P., Devos, K. M., & Doust, A. N. (2013). Genetic Control and Comparative Genomic Analysis of Flowering Time in Setaria (Poaceae). G3 Genes|Genomes|Genetics, 3(2), 283–295. https://doi.org/10.1534/g3.112.005207
Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the National Academy of Sciences, 88(21), 9828–9832. https://doi.org/10.1073/pnas.88.21.9828
Passot, S., Gnacko, F., Moukouanga, D., Lucas, M., Guyomarc’h, S., Ortega, B. M., Atkinson, J. A., Belko, M. N., Bennett, M. J., Gantet, P., Wells, D. M., Guédon, Y., Vigouroux, Y., Verdeil, J.-L., Muller, B., & Laplaze, L. (2016). Characterization of Pearl Millet Root Architecture and Anatomy Reveals Three Types of Lateral Roots. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00829
Rahaman, M. M., Chen, D., Gillani, Z., Klukas, C., & Chen, M. (2015). Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Frontiers in Plant Science, 6. https://doi.org/10.3389/fpls.2015.00619
Rajput, S. G., Plyler-Harveson, T., & Santra, D. K. (2014). Development and Characterization of SSR Markers in Proso Millet Based on Switchgrass Genomics. American Journal of Plant Sciences, 5(1), 175–186. https://doi.org/10.4236/ajps.2014.51023
Rellán-Álvarez, R., Lobet, G., Lindner, H., Pradier, P.-L., Sebastian, J., Yee, M.-C., Geng, Y., Trontin, C., LaRue, T., Schrager-Lavelle, A., Haney, C. H., Nieu, R., Maloof, J., Vogel, J. P., & Dinneny, J. R. (2015). GLO-Roots: An imaging platform enabling multidimensional characterization of soil-grown root systems. eLife, 4, e07597. https://doi.org/10.7554/eLife.07597
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089
Sebastian, J., Yee, M.-C., Goudinho Viana, W., Rellán-Álvarez, R., Feldman, M., Priest, H. D., Trontin, C., Lee, T., Jiang, H., Baxter, I., Mockler, T. C., Hochholdinger, F., Brutnell, T. P., & Dinneny, J. R. (2016). Grasses suppress shoot-borne roots to conserve water during drought. Proceedings of the National Academy of Sciences, 113(31), 8861–8866. https://doi.org/10.1073/pnas.1604021113
Vadez, V., Kholová, J., Hummel, G., Zhokhavets, U., Gupta, S. K., & Hash, C. T. (2015). LeasyScan: A novel concept combining 3D imaging and lysimetry for high-throughput phenotyping of traits controlling plant water budget. Journal of Experimental Botany, 66(18), 5581–5593. https://doi.org/10.1093/jxb/erv251
Wei, W., Li, S., Li, P., Yu, K., Fan, G., Wang, Y., Zhao, F., Zhang, X., Feng, X., Shi, G., Zhang, W., Song, G., Dan, W., Wang, F., Zhang, Y., Li, X., Wang, D., Zhang, W., Pei, J., … Zhao, Z. (2023). QTL analysis of important agronomic traits and metabolites in foxtail millet (Setaria italica) by RIL population and widely targeted metabolome. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1035906
Wilson, E. O. (1984). Biophilia. Harvard University Press.