Article section
Performance Indices, Carcass Characteristics, Organs, and Thermal Stress Responses of Broiler Chicken Exposed to Dietary Betaine Hydrochloride During Hot Season
Abstract
The impact of varied levels of betaine hydrochloride on performance indices, carcass characteristics and thermal stress of broilers during the hot season was assessed by this study. 180 day-old broiler chicks were distributed into 5 treatments labeled T1, T2, T3 and T4 randomly. Replicated three times, each treatment had 36 birds while 12 birds were allotted to each replicate. The treatments were as follows: T1 (control: 0 g of betaine/kg feed); T2 (1 g of betaine/kg feed); T3 (2 g of betaine/kg feed); T4 (3 g of betaine/kg feed); and T5 (4 g of betaine/kg feed). The birds were placed on these diets for 10 weeks. From the findings, it was found that the growth parameters were not different, with no significant (p>0.05) changes in the weights of the primal cuts when compared with the birds on the control diet. At weeks 7 to 10, there was a decrease in the panting rate of the broilers as betaine level increased, implying that the addition of betaine in the broiler diets lowered their thermal stress. In weeks 3 to 10, the rectal temperatures were not different apart from week 8 which was affected significantly. From these results, it is evident that commercially produced betaine HCL administered at 2g/kg diet can enhance broiler chicken performance during the hot season.
Keywords:
Betaine Hydrochloride Broiler Chicken Panting Rectal Temperature Thermoregulation
Article information
Journal
Journal of Agriculture, Aquaculture, and Animal Science
Volume (Issue)
2(2), (2025)
Pages
73-79
Published
Copyright
Copyright (c) 2025 Oladimeji, Tosin S., Ogunlade, Jacob T., Olatundun, Bukola E., Jimoh, Olatunji A., Kayode, Yetunde, Tadobo, Oluwagbenga, Omotosho, Boluwaji, Kareem, Abiola, Anerunoye, Folake, Ojo, Oluwafemi (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Abd El-Ghany, W. A., & Babazadeh, D. (2022). Betaine: A potential nutritional metabolite in the poultry industry. Animals, 12(19), 2624. https://doi.org/10.3390/ani12192624
Ademu, L. A., Daudu, O. M., Barje, P. P., & Olusiyi, J. A. (2020). Betaine hydrochloride ameliorates thermoregulatory responses of broiler chickens under dexamethasone induced heat stress. Nigerian Journal of Animal Production, 11-14.
Akhavan-Salamat, H., & Ghasemi, H. A. (2016). Alleviation of chronic heat stress in broilers by dietary supplementation of betaine and turmeric rhizome powder: dynamics of performance, leukocyte profile, humoral immunity, and antioxidant status. Tropical Animal Health and Production, 48(1), 181-188. https://doi.org/10.1007/s11250-015-0941-1.
Alagawany, M., Farag, M., Abd El-Hack, M., & Patra, A. (2017). Heat stress: Effects on productive andreproductive performance of quail. Worlds Poult Science Journal, 73, 747–756.
Apalowo, O. O., Ekunseitan, D. A., & Fasina, Y. O. (2024). Impact of Heat Stress on Broiler Chicken Production. Poultry , 3(2), 107-128. https://doi.org/10.3390/poultry3020010.
Awad, A. L., Fahim, H. N., Ibrahim, A. F., & Beshara, M. M. (2014). Effect of dietary betaine supplementation on productive and reproductive performance of domyati ducks under summer conditions. Egyptian Journal of Poultry Science, 34, 453-474. https://doi.org/10.21608/EPSJ.2014.5356.
Awad, E. A., Najaa, M., Zulaikha, Z. A., Zulkifli, I., & Soleimani, A. F. (2019). Effects of heat stress on growth performance, selected physiological and immunological parameters, caecal microflora, and meat quality in two broiler strains. Asian-Australasian Journal of Animal Sciences, 33(5), 778. https://doi.org/10.5713/ajas.19.0208
Bahry, M. A., Yang, H., Tran, P. V., Do, P. H., Han, G., Eltahan, H. M., ... & Furuse, M. (2018). Reduction in voluntary food intake, but not fasting, stimulates hypothalamic gonadotropin-inhibitory hormone precursor mRNA expression in chicks under heat stress. Neuropeptides, 71, 90-96. https://doi.org/10.1016/j.npep.2018.09.001
Cartoni, A., Baldi, G., Soglia, F., Mattioli, S., Sirri, F., Petracci, M., Castellini, C., & Zampiga, M. (2023). Impact of chronic heat stress on behavior, oxidative status and meat quality traits of fast-growing broiler chickens. Frontiers in Physiology, 14, 1242094. https://doi.org/10.3389/fphys.2023.1242094.
Chaiban, C., Robinson, T. P., Fèvre, E. M., Ogola, J., Akoko, J., Gilbert, M., & Vanwambeke, S. O. (2020). Early intensification of backyard poultry systems in the tropics: a case study. Animal, 14(11), 2387-2396. https://doi.org/10.1017/S175173112000110X
Dunshea, F. R., Cadogan, D. J., & Partridge, G. G. (2007). Dietary betaine and ractopamine have additive effects on lean tissue deposition, particularly in restrictively-fed gilts. Manipulating pig production XI. (Eds. JE Paterson and JA Barker). Australasian Pig Science Association, Scott Print, Perth, Western Australia (pp. 120).
Egbuniwe, I. C., Ayo, J. O., & Ocheja, O. B. (2018). Betaine and ascorbic acid modulate indoor behavior and some performance indicators of broiler chickens in response to hot-dry season. Journal of Thermal Biology, 76, 38-44.
Eklund, M., Bauer, E., Wamatu, J., & Mosenthin, R. (2005). Potential nutritional and physiological functions of betaine in livestock. Nutrition Research Reviews, 18(1), 31-48. https://doi.org/10.1079/NRR200493
FAO. (2012). Food Outlook. Rome: Food and Agriculture Organization of the United Nations.
Fouad, A. M., Chen, W., Ruan, D., Wang, S., Xia, W. G., & Zheng, C. T. (2016). Impact of heat stress on meat, egg quality, immunity and fertility in poultry and nutritional factors that overcome these effects: A review. International Journal of Poultry Science, 15(3), 81.
Gudev, D., Popova-Ralcheva, S., Ianchev, I., & Moneva, P. (2011). Effect of betaine and air ammonia concentration on broiler performance, plasma corticosterone level, lymphoid organ weights and some haematological indices. Biotechnology in Animal Husbandry, 27(3), 687-703.
Hassan, R. A., Ebeid, T. A., Abd El-Lateif, A. I., & Ismail, N. B. (2011). Effect of dietary betaine supplementation on growth, carcass and immunity of New Zealand White rabbits under high ambient temperature. Livestock Science, 135(2-3), 103-109. https://doi.org/10.1016/j.livsci.2010.06.132
Klasing, K. C., Adler, K. L., Calvert, C. C., & Remus, J. C. (2002). Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidia-infected chicks and increases functional properties of phagocytes. The Journal of Nutrition, 132(8), 2274-2282. https://doi.org/10.1093/jn/132.8.2274
Konca, Y., Kirkpinar, F., Mert, S., & Yaylak, E. (2008). Effects of betaine on performance, carcass, bone and blood characteristics of broilers during natural summer temperatures. Journal of Animal and Veterinary Advances, 7(8), 930-937. https://www.researchgate.net/publication/26590268
Kumari, K. N. R., & Nath, D. N. (2018). Ameliorative measures to counter heat stress in poultry. World's Poultry Science Journal, 74(1), 117-130. https://doi.org/10.1017/S0043933917001003
Lara, L. J., & Rostagno, M. H. (2013). Impact of heat stress on poultry production. Animals, 3(2), 356-369. https://doi.org/10.3390/ani3020356
Lipinski, K., Szramko, E., Jeroch, H., & Matusevicius, P. (2012). Effects of betaine on energy utilization in growing pigs-A review. Annals of Animal Science, 12(3), 291-300. https://doi.org/10.2478/v10220-012-0024-4
Nawab, A., Ibtisham, F., Li, G., Kieser, B., Wu, J., Liu, W., ... & An, L. (2018). Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. Journal of Thermal Biology, 78, 131-139. https://doi.org/10.1016/j.jtherbio.2018.08.010
Nawaz, A. H., Amoah, K., Leng, Q. Y., Zheng, J. H., Zhang, W. L., & Zhang, L. (2021). Poultry response to heat stress: Its physiological, metabolic, and genetic implications on meat production and quality including strategies to improve broiler production in a warming world. Frontiers in veterinary science, 8, 699081. https://doi.org/10.3389/fvets.2021.699081
Neto, G. M., Pesti, G. M., & Bakalli, R. I. (2000). Influence of dietary protein level on the broiler chicken‘s response to methionine and betaine supplements. Poultry Science, 79(10), 1478-1484. https://doi.org/10.1093/ps/79.10.1478
Nofal, M. E., Magda, A. G., Mousa, S., Doaa, M. M. Y., & Bealsh, A. M. A. (2015). Effect of dietary betaine supplementation on productive, physiological and immunological performance and carcass characteristic of growing developed chicks under the condition of heat stress. Egyptian Journal of Poultry Science, 35, 237-259
Noll, S. L., Stangeland, V., Speers, G., Brannon, J., & Kalbfleisch, J. (2002, May). Betaine and breast meat yield in turkeys. In Proc. Multistate Poultry Nutrition and Feeding Conf., Indianapolis, IN. Universities of Kentucky, Illinois, Michigan State, Purdue and Ohio State Cooperating. http://ag.ansc.purdue.edu/poultry/multistate/publication.htm
Olorunwa, O. J. (2018). Economic Analysis of Broiler Production in Lagos State Poultry Estate, Nigeria . Journal of Investment and Management, 7(1), 35-44. https://doi.org/10.11648/j.jim.20180701.15
Paswan, C., Bhattacharya, T. K., Nagaraj, C. S., Chatterjee, R. N., & Guru Vishnu, P. (2014). Role and present status of biotechnology in augmenting poultry productivity in India. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 84(4), 855–863. https://doi.org/10.1007/s40011-014-0306-y
Pawar, S. S., Sajjanar, B., Lonkar, V. D., Kurade, N. P., Kadam, A. S., Nirmal, A. V., ... & Bal, S. K. (2016). Assessing and mitigating the impact of heat stress in poultry. Advances in Animal and Veterinary Sciences, 4(6), 332-341. https://doi.org/10.14737/journal.aavs/2016/4.6.332.341
Pirompud, P., Attamangkune, S., Bunchasak, C. and Promboon, A. (2005). Effect of feeding betaine to broilers reared under tropical conditions on performance and carcass traits. Proceedings of 43rd Kasetsart University Annual Conference (pp. 254).
Sahel Capital. (2015). An Assessment of the Nigerian Poultry Sector. Retrieved 11th August, 2025 from https://sahelcapital.com/wp-content/uploads/2021/07/sahel.Newsletter-volume-11-An-Assessment-of-the-Nigerian-Poultry-Sector.pdf
Sakomura, N. K., Barbosa, N. A., Da Silva, E. P., Longo, F. A., Kawauchi, I. M., & Fernandes, J. B. (2013). Efeito da suplementação de betaína em dietas de frangos de corte em condições de termoneutralidade. Revista Brasileira de Ciências Agrárias, 8(2), 336-341. https://doi.org/10.5039/agraria.v8i2a1442
Shini, S., Kaiser, P., Shini, A., & Bryden, W. L. (2008). Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comparative Biochemistry and Physiology. Part B Biochemistry and Molecular Biology, 149(2), 324-333. https://doi.org/10.1016/j.cbpb.2007.10.003
Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D., Zhai, P., Slade, R., Connors, S., & Van Diemen, S. (2019). Climate Change and Land: An IPCC special report on climate change, desertiflcation, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. In Proceedings of the Bonn Climate Change Conference, Bonn, Germany.
St-Pierre, N., Cobanov, B., & Schnitkey, G. (2003) Economic losses from heat stress by US livestock industries. Journal of Dairy Science, 86, E52–E77. https://doi.org/10.3168/jds.S0022-0302(03)74040-5.
Stott, G. H. (1981). What is animal stress and how is it measured? Journal of Animal Science, 52(1), 150. https://doi.org/10.2527/jas1981.521150x
Tang, J., & Chen, Z. (2016). The protective effect of γ-aminobutyric acid on the development of immune function in chickens under heat stress. Journal of Animal Physiology and Animal Nutrition, 100(4), 768–777. https://doi.org/10.1111/jpn.12385
Vahdatpour, T., Nazer Adl, K., Ebrahim Nezhad, Y., Mahery Sis, N., Riyazi, S. R., & Vahdatpour, S. (2009). Effects of corticosterone intake as stress-alternative hormone on broiler chickens: Performance and blood parameters‘. Asian Journal of Animal and Veterinary Advance, 4(1), 16-21. https://doi.org/10.3923/ajava.2009.16.21
Vandana, G. D., Sejian, V., Lees, A. M., Pragna, P., Silpa, M. V., & Maloney, S. K. (2021). Heat stress and poultry production: impact and amelioration. International Journal of Biometeorology, 65(2), 163-179. https://doi.org/10.1007/s00484-020-02023-7
Vinales, K. L., Begaye, B., Thearle, M. S., Krakoff, J., & Piaggi, P. (2019). Core body temperature, energy expenditure, and epinephrine during fasting, eucaloric feeding, and overfeeding in healthy adult men: evidence for a ceiling effect for human thermogenic response to diet. Metabolism, 94, 59-68. https://doi.org/10.1016/j.metabol.2019.01.016
Wasti, S., Sah, N., & Mishra, B. (2020). Impact of heat stress on poultry health and performances, and potential mitigation strategies. Animals, 10(8), 1266. https://doi.org/10.3390/ani10081266
Wiepkema, P. R., & Koolhaas, J. M. (1993). Stress and Animal Welfare. Animal Welfare, 2(3), 195-218.
Yahav, S., Straschnow, A., Plavnik, I., & Hurtwitz, S. (1997). 'Blood system responses of chickens to changes in environmental temperature'. Poultry Science, 76(4), 627-633. https://doi.org/10.1093/ps/76.4.627
Zhan, X. A., Li, J. X., Xu, Z. R., & Zhao, R. Q. (2006). Effects of methionine and betaine supplementation on growth performance, carcass composition and metabolism of lipids in male broilers. British Poultry Science, 47(5), 576-580. https://doi.org/10.1080/00071660600963438