Article section
A Data-Driven Framework for Project Risk Monitoring Using Decision Intelligence and Predictive Analytics
Abstract
Effective project risk monitoring remains central to successful project delivery, yet traditional approaches based on static registers and qualitative assessments fail to reflect dynamic project performance. This study reviews how historical business performance data can be leveraged through Decision Intelligence (DI) and predictive analytics to enhance risk monitoring and inform future project planning. Drawing on literature across project management, business analytics, and DI, it identifies how metrics such as budget variance, schedule adherence, and resource utilization can support data-driven forecasting and proactive risk control. The paper proposes a Data-Driven Risk Intelligence Framework (DRIF) that integrates performance data, analytics, and iterative learning to transform risk management into an adaptive, continuously improving process. The findings highlight both the promise of DI-enabled risk systems and the lack of empirical validation and standardized models across sectors. The study calls for cross-disciplinary research to operationalize DI frameworks and establish unified metrics for predictive, evidence-based risk management.
Keywords:
Business Performance Data Data-Informed Project Planning Decision Intelligence Lessons Learned Predictive Analytics Project Forecasting Project Risk Monitoring
Article information
Journal
Journal of Management, and Development Research
Volume (Issue)
2(2), (2025)
Pages
125-136
Published
Copyright
Copyright (c) 2025 Damilola Ayodele Ojo (Author)
Open access

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Bakos, L., & Dumitrașcu, D. D. (2021). Decentralized Enterprise Risk Management Issues under Rapidly Changing Environments. Risks, 9(9), 165. https://doi.org/10.3390/risks9090165
Bakumenko, A., & Elragal, A. (2022). Detecting Anomalies in Financial Data Using Machine Learning Algorithms. Systems, 10(5), 130. https://doi.org/10.3390/systems10050130
Barghi, B., & Shadrokh sikari, S. (2020). Qualitative and quantitative project risk assessment using a hybrid PMBOK model developed under uncertainty conditions. Heliyon, 6(1), e03097. https://doi.org/10.1016/j.heliyon.2019.e03097
Bhavsar, K., Shah, V., & Gopalan, S. (2020). Scrumbanfall: an agile integration of scrum and kanban with waterfall in software engineering. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(4), 2075-2084.
Björnsdottir, S. H., Jensson, P., Thorsteinsson, S. E., Dokas, I. M., & de Boer, R. J. (2022). Benchmarking ISO Risk Management Systems to Assess Efficacy and Help Identify Hidden Organizational Risk. Sustainability, 14(9), 4937. https://doi.org/10.3390/su14094937
Boéri, J., & Giustini, D. (2023). Qualitative research in crisis: A narrative-practice methodology to delve into the discourse and action of the unheard in the COVID-19 pandemic. Qualitative Research, 14687941231155620. https://doi.org/10.1177/14687941231155620
Buganova, K., Luskova, M., Kubas, J., Brutovsky, M., & Slepecky, J. (2021). Sustainability of Business through Project Risk Identification with Use of Expert Estimates. Sustainability, 13(11), 6311. https://doi.org/10.3390/su13116311
Castro Miranda, S. L., Del Rey Castillo, E., Gonzalez, V., & Adafin, J. (2022). Predictive Analytics for Early-Stage Construction Costs Estimation. Buildings, 12(7), 1043. https://doi.org/10.3390/buildings12071043
Chen, S., Wang, C., & Yan, K. (2024). Assessing Project Resilience Through Reference Class Forecasting and Radial Basis Function Neural Network. Applied Sciences, 14(22), 10433. https://doi.org/10.3390/app142210433
Delen, D., & Ram, S. (2018). Research challenges and opportunities in business analytics. Journal of Business Analytics, 1(1), 2–12. https://doi.org/10.1080/2573234X.2018.1507324
Ebule, A. E. (2025). The Role of Business Intelligence and Artificial Intelligence in Real-Time Decision Making. International Journal of Scientific Research and Management (IJSRM), 13(01), 1902–1916. https://doi.org/10.18535/ijsrm/v13i01.ec04
Eid, A. E., Hayder, G., & Alhussian, H. (2025). Applications of Intelligent Models in Processes in the Construction Industry: Systematic Literature Review. Processes, 13(9), 2866. https://doi.org/10.3390/pr13092866
Eriksen, S., Schipper, E. L. F., Scoville-Simonds, M., Vincent, K., Adam, H. N., Brooks, N., Harding, B., Khatri, D., Lenaerts, L., Liverman, D., Mills-Novoa, M., Mosberg, M., Movik, S., Muok, B., Nightingale, A., Ojha, H., Sygna, L., Taylor, M., Vogel, C., & West, J. J. (2021). Adaptation interventions and their effect on vulnerability in developing countries: Help, hindrance or irrelevance? World Development, 141, 105383. https://doi.org/10.1016/j.worlddev.2020.105383
Fawzy, A., Tahir, A., Galster, M., & Liang, P. (2025). Exploring data management challenges and solutions in agile software development: A literature review and practitioner survey. Empirical Software Engineering, 30(3), 77. https://doi.org/10.1007/s10664-025-10630-4
Gonçalves, C. T., Gonçalves, M. J. A., & Campante, M. I. (2023). Developing Integrated Performance Dashboards Visualisations Using Power BI as a Platform. Information, 14(11), 614. https://doi.org/10.3390/info14110614
Huang, J., Xu, Y., Wang, Q., Wang, Q. (Cheems), Liang, X., Wang, F., Zhang, Z., Wei, W., Zhang, B., Huang, L., Chang, J., Ma, L., Ma, T., Liang, Y., Zhang, J., Guo, J., Jiang, X., Fan, X., An, Z., … Fei, A. (2025). Foundation models and intelligent decision-making: Progress, challenges, and perspectives. The Innovation, 6(6), 100948. https://doi.org/10.1016/j.xinn.2025.100948
Hughes, L., Mavi, R. K., Aghajani, M., Fitzpatrick, K., Gunaratnege, S. M., Shekarabi, S. A. H., Hughes, R., Khanfar, A., Khatavakhotan, A., Mavi, N. K., Li, K., Mahmoud, M., Malik, T., Mutasa, S., Nafar, F., Yates, R., Alahmad, R., Jeon, I., & Dwivedi, Y. K. (2025). Impact of artificial intelligence on project management (PM): Multi-expert perspectives on advancing knowledge and driving innovation toward PM2030. Journal of Innovation & Knowledge, 10(5), 100772. https://doi.org/10.1016/j.jik.2025.100772
Jamarani, A., Haddadi, S., Sarvizadeh, R., Haghi Kashani, M., Akbari, M., & Moradi, S. (2024). Big data and predictive analytics: A systematic review of applications. Artificial Intelligence Review, 57(7), 176. https://doi.org/10.1007/s10462-024-10811-5
Kalogiannidis, S., Kalfas, D., Papaevangelou, O., Giannarakis, G., & Chatzitheodoridis, F. (2024). The Role of Artificial Intelligence Technology in Predictive Risk Assessment for Business Continuity: A Case Study of Greece. Risks, 12(2), 19. https://doi.org/10.3390/risks12020019
Kgakatsi, M., Galeboe, O. P., Molelekwa, K. K., & Thango, B. A. (2024). The Impact of Big Data on SME Performance: A Systematic Review. Businesses, 4(4), 632–695. https://doi.org/10.3390/businesses4040038
Khatib, M. E., Jaberi, A. A., & Mahri, A. A. (2021). Benchmarking Projects’ “Lessons Learned” through Knowledge Management Systems: Case of an Oil Company. iBusiness, 13(1), 1–17. https://doi.org/10.4236/ib.2021.131001
Ko, J. H., & Kim, D. (2019). The Effects of Maturity of Project Portfolio Management and Business Alignment on PMO Efficiency. Sustainability, 11(1), 238. https://doi.org/10.3390/su11010238
Konior, J. (2022). Determining Cost and Time Performance Indexes for Diversified Investment Tasks. Buildings, 12(8), 1198. https://doi.org/10.3390/buildings12081198
Kutsch, E., & Hall, M. (2005). Intervening conditions on the management of project risk: Dealing with uncertainty in information technology projects. International Journal of Project Management, 23(8), 591–599. https://doi.org/10.1016/j.ijproman.2005.06.009
LI, H., & Tian, F. (2025). Advancing Decision-Making through AI-Human Collaboration: A Systematic Review and Conceptual Framework. Research Square. https://doi.org/10.21203/rs.3.rs-6885768/v1
Marnewick, C., & Marnewick, A. L. (2022). Digitalization of project management: Opportunities in research and practice. Project Leadership and Society, 3, 100061. https://doi.org/10.1016/j.plas.2022.100061
McGaughey, J., Fergusson, D. A., Van Bogaert, P., & Rose, L. (2021). Early warning systems and rapid response systems for the prevention of patient deterioration on acute adult hospital wards. The Cochrane Database of Systematic Reviews, 2021(11), CD005529. https://doi.org/10.1002/14651858.CD005529.pub3
Mohammad, A., & Chirchir, B. (2024). Challenges of Integrating Artificial Intelligence in Software Project Planning: A Systematic Literature Review. Digital, 4(3), 555–571. https://doi.org/10.3390/digital4030028
Nenni, M. E., De Felice, F., De Luca, C., & Forcina, A. (2025). How artificial intelligence will transform project management in the age of digitization: A systematic literature review. Management Review Quarterly, 75(2), 1669–1716. https://doi.org/10.1007/s11301-024-00418-z
Nunes, F., Alexandre, E., & Gaspar, P. D. (2024). Implementing Key Performance Indicators and Designing Dashboard Solutions in an Automotive Components Company: A Case Study. Administrative Sciences, 14(8), 175. https://doi.org/10.3390/admsci14080175
Perifanis, N.-A., & Kitsios, F. (2023). Investigating the Influence of Artificial Intelligence on Business Value in the Digital Era of Strategy: A Literature Review. Information, 14(2), 85. https://doi.org/10.3390/info14020085
Prasetyo, M. L., Peranginangin, R. A., Martinovic, N., Ichsan, M., & Wicaksono, H. (2025). Artificial intelligence in open innovation project management: A systematic literature review on technologies, applications, and integration requirements. Journal of Open Innovation: Technology, Market, and Complexity, 11(1), 100445. https://doi.org/10.1016/j.joitmc.2024.100445
Risk Management Plan. (n.d.). An overview. ScienceDirect Topics. Retrieved October 21, 2025, from https://www.sciencedirect.com/topics/computer-science/risk-management-plan
Salimimoghadam, S., Ghanbaripour, A. N., Tumpa, R. J., Kamel Rahimi, A., Golmoradi, M., Rashidian, S., & Skitmore, M. (2025). The Rise of Artificial Intelligence in Project Management: A Systematic Literature Review of Current Opportunities, Enablers, and Barriers. Buildings, 15(7), 1130. https://doi.org/10.3390/buildings15071130
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x
Sarker, I. H. (2022). AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. Sn Computer Science, 3(2), 158. https://doi.org/10.1007/s42979-022-01043-x
Schulze, A., Brand, F., Geppert, J., & Böl, G.-F. (2023). Digital dashboards visualizing public health data: A systematic review. Frontiers in Public Health, 11, 999958. https://doi.org/10.3389/fpubh.2023.999958
Sobieraj, J., & Metelski, D. (2022). Project Risk in the Context of Construction Schedules—Combined Monte Carlo Simulation and Time at Risk (TaR) Approach: Insights from the Fort Bema Housing Estate Complex. Applied Sciences, 12(3), 1044. https://doi.org/10.3390/app12031044
Taresh, N. S. S., Golestanizadeh, M., Sarvari, H., & Edwards, D. J. (2025a). The Impact of Using Information Systems on Project Management Success Through the Mediator Variable of Project Risk Management: Results from Construction Companies. Buildings, 15(8), 1260. https://doi.org/10.3390/buildings15081260
Tian, K., Zhu, Z., Mbachu, J., Ghanbaripour, A., & Moorhead, M. (2025). Artificial intelligence in risk management within the realm of construction projects: A bibliometric analysis and systematic literature review. Journal of Innovation & Knowledge, 10(3), 100711. https://doi.org/10.1016/j.jik.2025.100711
Tubis, A. A., & Werbińska-Wojciechowska, S. (2021). Risk Management Maturity Model for Logistic Processes. Sustainability, 13(2), 659. https://doi.org/10.3390/su13020659
Ullah, S., Xiaopeng, D., Anbar, D. R., Victor Amaechi, C., Kolawole Oyetunji, A., Ashraf, M. W., & Siddiq, M. (2024). Risk identification techniques for international contracting projects by construction professionals using factor analysis. Ain Shams Engineering Journal, 15(4), 102655. https://doi.org/10.1016/j.asej.2024.102655
Varajão, J., Lourenço, J. C., & Gomes, J. (2022). Models and methods for information systems project success evaluation – A review and directions for research. Heliyon, 8(12), e11977. https://doi.org/10.1016/j.heliyon.2022.e11977
Willumsen, P., Oehmen, J., Stingl, V., & Geraldi, J. (2019). Value creation through project risk management. International Journal of Project Management, 37(5), 731–749. https://doi.org/10.1016/j.ijproman.2019.01.007
Stecab Publishing

Call for Papers
Author's Guidelines
Manuscript Template
References Guideline